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A fundamental problem for regulatory networks is to understand the relation between form and
function: to uncover the underlying design principles of the network. Circadian clocks present a
particularly interesting instance, as recent work has shown that they have complex structures
involving multiple interconnected feedback loops with both positive and negative feedback.
While several authors have speculated on the reasons for this, a convincing explanation is still
lacking. We analyse both the flexibility of clock networks and the relationships between various
desirable properties such as robust entrainment, temperature compensation, and stability to
environmental variations and parameter fluctuations. We use this to argue that the complexity
provides the flexibility necessary to simultaneously attain multiple key properties of circadian
clocks. As part of our analysis we show how to quantify the key evolutionary aims using
infinitesimal response curves, a tool that we believe will be of general utility in the analysis
of regulatory networks. Our results suggest that regulatory and signalling networks might be
much less flexible and of lower dimension than their apparent complexity would suggest.
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1. INTRODUCTION

Current descriptions of the molecular circadian clock
have a negative feedback loop with delay at their heart
(Goldbeter 2002; Roenneberg & Merrow 2003; Young
& Kay 2001). Indeed, such a single feedback loop with
a very simple structure will produce robust oscillations
(Leloup et al. 1999). It is, therefore, pertinent to ask
why current understanding of the regulatory networks
of these clocks suggests that they almost universally
have a much more complicated structure, with multiple
interlocking feedback loops with both negative and
positive feedback. Several authors have speculated on
the reasons for this complexity (Albrecht et al. 2001;
Cheng et al. 2001; Cyran et al. 2003; Daan et al. 2001;
Glossop et al. 1999; Johnson et al. 2003; Lee et al. 2000;
Preitner et al. 2002; Reddy et al. 2002; Roenneberg &
Merrow 2003; Smolen et al. 2001; Ueda et al. 2001). The
primary reason (although not the only one) suggested
is robustness, either to parameter perturbations or to
stochastic fluctuations. However, it has not been shown
that the observed structure leads to robustness or,
indeed, why one would expect this. Of course, it is likely
that some of the complexity arises from specific needs of
the organism in question. Nevertheless, it is important
to consider whether there are general principles behind
the form of the structures observed, especially in view of
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the fact that the disparate clock mechanisms maintain
biological rhythms in a very similar fashion in all
organisms, an apparent instance of convergent evolution
(Young & Kay 2001).

In this paper we address this problem by using
differential equation models of the clock. We show
(i) that clocks involving a single loop are inflexible
in a precise sense (defined below) and (ii) that the
degree of flexibility of a clock network is related to
the complexity of the loop structure. Then we analyse
why this flexibility is important for the functioning of
the clock.

Circadian oscillators are entrained by the daily
cycles of light and temperature (Johnson et al. 2003).
Entrainment by light is generally considered to work
by modulating a small number of particular parameters
of the regulatory network such as certain degradation
or expression rates. For temperature the mechanism is
less clear. It is generally assumed that temperature fluc-
tuations affect many more rates and it is unclear how
these combine (Rensing & Ruoff 2002). For entrainment
by light or temperature to work, the clock must be
sensitive to fluctuations in either of these environmental
factors. On the other hand, an important property of
many clocks is that key characteristics such as period
are not sensitive to sustained changes in, for example,
temperature (Johnson et al. 2003). To analyse the rela-
tions between these goals that are prima facae at odds
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Table 1. Flexibility dimension and relevant singular spectrum of various published models. n and s are, respectively, the
number of dynamical variables and parameters. The four values given for d are, respectively, the values of the flexibility
dimension d when ε2 = 0.05, 0.01, 0.005 and 0.001, so that the first d principal components capture approximately 95, 99, 99.5
and 99.9% of the variance. Thus the third of these is the number of i with log10 σi/σ1 greater than (log10 0.005)/2 ∼ 1.15.
The values of d given are for changes that are measured relative to the size of the corresponding parameter values and
therefore the singular values are those for M∗∆ (see the text). It is usually more relevant to consider these than the values
for absolute changes although, in fact, the values of d obtained in this case are almost the same. Almost universally s is
bigger than d by an order of magnitude and d grows roughly linearly with the loop complexity. The ratio s/d is lower for
the last model, but in this case the number of parameters s has been kept artificially low by assuming that several different
parameters are identical. It should be noted that we have not included the Goodwin model (Goodwin 1965) or the model
of Tyson et al. (1999). The Goodwin model was used to predict a variety of Neurospora circadian clock properties which
later were found experimentally (Ruoff & Rensing 1996; Ruoff et al. 2001). The model of Tyson et al. was one of the earliest
models for the Drosophila clock. The methods of this paper can be applied to these models, but we have not included them
here because in the published versions the light input is not included. Both have very low flexibility dimensions.

Model n s d log10 σj/σ1 with σj/σ1 > 10−2

Leloup et al. (1999) Neurospora 3 10 1, 2, 3, 4 0, −0.97, −1.15, −1.26, −1.62, −1.75, −1.81
Leloup et al. (1999) Drosophila 10 38 2, 3, 3, 6 0, −0.19, −0.85, −1.32, −1.38, −1.43, −1.59, −1.73,

−1.78, −1.91, −1.93
Ueda et al. (2001) Drosophila 10 55 1, 1, 1, 2 0, −1.33, −1.52, −1.67, −1.84, −1.93
Leloup–Goldbeter (2003) mammalian 16 53 1, 2, 2, 5 0, −0.71, −1.24, −1.4, −1.5, −1.71, −1.74, −1.78, −1.88
(Leloup & Goldbeter 2003)
Mammalian with 2nd Per loop 27 93 2, 3, 3, 6 0, −0.64, −0.74, −1.24, −1.27, −1.42, −1.52, −1.73,
(see Electronic Appendix) −1.77, −1.8, −1.82, −1.9, −1.95
Forger–Peskin (2003) mammalian 73 36 5, 7, 9, 10 0, −0.14, −0.37, −0.58, −0.61, −0.67, −0.82, −1.07,

−1.1, −1.32, −1.53, −1.61, −1.7, −1.83, −1.84, −1.99

we introduce a set of tools, infinitesimal response curves
(IRCs), which allow us to characterize the stability and
entrainment properties of the clock.

The phenotype of the clock is largely determined
by the set of characteristics describing, for example,
how it is entrained by light and temperature, the phase
relationships between the protein products, the coordi-
nation of output pathways and which phases it can track
(e.g. dawn and dusk). These characteristics need to be
robustly persistent in response to both sustained and
stochastic changes in environmental variables such as
temperature and pH, to changes in nutrition or growth
conditions and to internal fluctuations of the molecular
environment of the cell. They are largely determined by
the network structure of the clock and the values of the
various parameters (such as rate constants) describing
the interactions quantitatively. Thus, we can regard
evolution as acting on both the network structure and
the parameters by small changes, as revealed by the
natural genetic variation (Johnson et al. 2003) in the
mouse, Drosophila, and Arabidopsis. Although larger
changes occur, such as the deletion of core genes, they
do not seem to be maintained and thus we do not
consider them here.

Evolution will act to simultaneously tune the mul-
tiple and possibly conflicting characteristics. To under-
stand how this can be achieved one has to address two
problems:

(a) one must understand the relationships between the
various characteristics (e.g. to what extent they
can be tuned independently and which of them are
strongly related);

(b) one must ascertain how flexible the clock’s struc-
ture is, i.e. how easy it is to simultaneously tune
for the multiple goals.

To address the first of these (a), we show that the
key goals can be expressed in terms of certain system
variables so that each of them corresponds to tuning
one or more of these system variables to certain pre-
scribed values. These system variables can be simply
expressed in terms of the IRCs introduced below. Our
analysis shows that there are a significant number of
effectively independent quantities that evolution has
to act on and one is able to determine which com-
binations of parameters are to be tuned in order to
move towards the realization of a specific circadian
characteristic.

To address problem (b) we introduce below a mea-
sure of the flexibility. Its importance is that it tells
us how many key system variables evolution is able
to simultaneously tune and in how many dimensions
evolution can move the system. We produce evidence
that this flexibility is much lower than one would expect
from the fact that all clock systems depend upon a very
large number, s, of parameters such as rate or coupling
constants.

For the published models considered in table 1, s
ranges from nine to over 50 and in reality the number
of parameters is likely to be higher. On the face of it, the
large number of tunable parameters might suggest that
there is a huge flexibility to explore and optimize key
characteristics of the clock. However, it turns out that
our analysis shows that this is not the case and that the
maximum number of goals that can be simultaneously
tuned is much smaller than s, usually by an order of
magnitude, and is roughly proportional to the loop
complexity of the network. In order to do this we
introduce a measure of the maximum number of goals
that can be simultaneously tuned which we call the
flexibility dimension. We argue that:
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• there is a significant number, q, of key evolutionary
targets that are largely independent of each other;

• the realization of these is effectively impossible if
the flexibility dimension d is less than q;

• therefore, there is a selective advantage in increas-
ing d, which generates selective pressure for
increased loop complexity.

The literature now contains a broad array of explic-
itly molecular models for circadian clocks that are
described by differential equations (Goldbeter 2002).
This provides the most appropriate framework in which
to address the above problems. The species covered
include Neurospora, Drosophila and the mouse. These
models were constructed using the current molecular
information to define the regulatory network structure.
The parameters were tuned to obtain as good a match
as possible with experimental results, such as measured
phase relationships and phase response curves, and the
results of mutation analysis. In hardly any cases have
the parameter values been measured experimentally,
although broad physiological ranges are known for
many. Our analysis is not specific to any of these models
but in table 1 we list a number of them that are
used to illustrate the points we make. All these models
display sustained oscillations in the appropriate param-
eter regimes and are entrained by light–dark cycles
of appropriate intensity. This sustained oscillation is
described by a (stable) limit cycle.

Throughout we denote the parameters of the system
under consideration by ki and collect them into a
vector k = (k1, . . . , ks). These parameters, for exam-
ple, determine the functional descriptions of transcrip-
tion, translation, (de)phosphorylation, degradation and
substrate binding. When the parameters are changed
(usually by small amounts), the variation is denoted by
δk = (δk1, . . . , δks) (so that the new parameter values
are given by k + δk = (k1 + δk1, . . . , ks + δks)) and the
change caused in an output such as Qj is denoted by
δQj . Outputs Qj will include quantities such as period,
the phases of the maxima and minima of mRNA and
proteins, the amplitude of these maxima and minima,
and the levels of mRNA and protein at prescribed
phases. They can also be functions rather than numbers;
for instance a phase response curve (PRC). All of the
outputs Qj we consider are functions of the limit cycle,
i.e. assuming that we know the differential equations
describing the clock, the value of the output Qj is
determined by the limit cycle.

2. CHARACTERIZING EVOLUTIONARY
GOALS: IRCs

We now turn to problem (a): to what extent can the
key characteristics be tuned independently and which
of them are strongly related. In particular, we wish
to describe which combinations of parameters can be
tuned in order to produce a specific circadian charac-
teristic. The aim is to characterize the key evolution-
ary goals so that they are given by transparent and
comparable mathematical conditions. We use the fact
that the effect of small parameter changes can be well
approximated using perturbation theory. The quality of
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Figure 1. All the large amplitude IRCs fki,period(φ) for
period for the Drosophila model of Leloup et al. (1999).

approximation can be determined by the calculation of
higher order terms.

2.1. IRCs

Suppose that the oscillator has a stable limit cycle of
period p given by x = g(φ) with φ representing the
phase, i.e. time t mod p. The key insight is that for
each parameter ki and output Qj there is a function
fki,Qj (φ) of the phase φ with the following property: if
one changes a number of parameters k1, . . . , ks to k1 +
δk1, . . . , ks + δks only when the phase φ is between φ1

and φ2, then the linear approximation to the change
δQj in an output variable Qj is of the form

δQj =
s∑

i=1

δki

(∫ φ2

φ1

fki,Qj (φ) dφ

)
. (2.1)

This relation holds for all choices of φ1 and φ2 and,
therefore, uniquely defines the function fki,Qj (φ) that
we call the IRC for parameter ki on output variable Qj .
Since these curves can readily be computed from their
analytical expressions, for a given oscillator one can
rapidly numerically calculate all IRCs for all parameters
ki and all relevant output variables Qj (see figure 1 and
Electronic Appendix).

2.2. Relationship to PRCs

When Qj is the period of the cycle,

f(φ) = −δki

∫ σ2

σ1

fki,Qj (φ) dφ (2.2)

is the PRC of a small perturbation δki in the parameter
ki applied between the phases φ1 and φ2. If this change
in ki is caused by light, then this is the usual PRC for
a light pulse applied between the phases φ1 and φ2.
Thus, since for the models under consideration these
curves provide excellent approximations to the usual
PRCs even when the perturbations are not particularly
small (see figure 2), the analytical expressions allow
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Figure 2. PRCs for the Drosophila model of Leloup et al.
(1999) for light pulses of duration 1 (blue stars), 2 (purple
triangles) and 4 hours (red circles) together with an approx-
imation obtained by integrating the corresponding IRC (as
given in equation (2.4)) from dawn to dusk (corresponding
colour full curve). The PRCs are calculated directly by
numerically solving the differential equation which has been
perturbed by an appropriate light pulse and measuring the
phase change. In this model light acts by increasing the
degradation of TIM-p2 and thus the IRC used in the integral
is −fνdt,period(φ) because the parameter νdT is changed
when light is on. The effect of the light is as in the original
publication (νdT is changed from 3 to 6 nMh−1), but we
very slightly changed the light profile by smoothing out the
discontinuities.

rapid computation of all possible PRCs without having
to simulate the system and calculate PRCs in the usual
way. Later we will see that the fact that IRCs can
approximate PRCs allows us to analyse such things
as the relation between entrainment and temperature
compensation. Figure 1 shows the largest amplitude
IRCs for a model of the Drosophila clock when Qj is
period. It should be noted that only type 1 PRCs can be
approximated in this way because type 0 PRCs require
a large perturbation that changes the topology of the
PRC.

Using the results of an analysis such as that shown
in figure 1, in the next section we show that one can
estimate the effects of any hypothetical input pathway
on the phase and strength of entrainment. Moreover,
by the linearity of equation (2.1) it follows that one
can also estimate the effect of combinations of different
pathways. For example, if light of intensity I has the
effect of changing ki by δki = δki(I) and k� by δk� =
δk�(I), then the corresponding PRC is given by

f(φ) = −(δkifki,period(φ) + δk�fk�,period(φ)).

2.3. Relating entrainment and IRCs

The simplest (but only approximate) way to relate IRCs
to stable entrainment is as follows. Suppose that the
effect of light of intensity I is to change the parameter ki

by an amount δki = δki(I) to ki + δki(I). We assume
that the light acts periodically with period L (usually
24 h), the length of a day. Let us consider the phase φn

of the oscillator at dawn on day n. A simple argument
(see Electronic Appendix) shows that

φn+1 = F (φn) = φn + V (φn) + ∆L, (2.3)

where ∆L (the circadian correction) is the difference
between L and the period p of the unforced system,
and

V (φ) = −δki(I)
∫ φ2−φ1+φ

φ

fki,period(σ) dσ (2.4)

is the phase response curve (given by equation (2.2))
for light of intensity I acting from dawn φ = φ1 to
dusk φ = φ2. For (2.3) to be a good approximation,
equation (2.4) must give a good approximation of the
PRC (as in figure 2) and, for the unforced system,
perturbed trajectories must rapidly return to the limit
cycle. Equation (2.3) determines a dynamical system
so that if φ0 is the phase at dawn on day 0 then the
phases on days 1, 2, 3, 4 and so on are given by φ1 =
F (φ0), φ2 = F (φ1) = F (F (φ0)) = F 2(φ0), φ3 = F 3(φ0),
φ4 = F 4(φ0), . . . . We call this dynamical system F the
phase response mapping and in figure 3 we show this
mapping for the Drosophila model of Leloup et al.
(1999).

Note that if V (φ) is regarded as a PRC then F is
related to the so-called phase transition curve (PTC).
The PTC φ′ = Q(φ) is defined to be the final phase
reached at the end of the stimulus that began at phase
φ. Thus F (φ) = Q(φ) + ∆L.

Entrainment corresponds to the existence of a stable
fixed point φ∗ of the map F given by (2.3) because
then, for almost all starting conditions φ0, the system
eventually settles down to a state where φn is approx-
imately constant at φ∗(φn → φ∗ as n →∞). A fixed
point φ∗ satisfies the equation V (φ∗) = −∆L. In other
words, if the starting phase is this fixed point value φ∗
the phase shift resets the clock by an amount ∆T so
that the next starting phase is the same and so the
clock is entrained to period L. If the graph of (2.3) is
drawn (as in figure 3), the fixed points correspond to the
intersections between the graph and the diagonal given
by φn+1 = φn. The fixed point (and hence entrainment)
is stable provided that −2 < V (φ∗) < 0 because then
|F ′(φ∗)| < 1.

Robustness of the entrainment means that the stable
fixed point of (2.3) persists under reasonable environ-
mental, physiological and other perturbations. Thus
entrainment requires that the amplitude of V is greater
than the circadian correction ∆L. Otherwise, there
will be no intersection between the graph of the map
F and the diagonal given by φn+1 = φn. However, it
follows that, since V is given by (2.4), entrainment can
only occur if δki(I)fki,period has sufficient amplitude
to produce a phase shift of ∆L (Johnson et al. 2003).
The required amplitude as a function of ∆L can be
estimated from equation (2.3). Moreover, the fixed point
φ∗ determines the phase of entrainment and this can
therefore be determined from fki,period in the same
manner as from a PRC.

J. R. Soc. Interface (2004)
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Figure 3. Phase return mapping for the Drosophila model of
Leloup et al. (1999) when the day length is 9 h. The blue full
curve shows the mapping as calculated using the IRCs as in
equations (2.3) and (2.4) and the red circles show what is
obtained if instead of using the IRC to calculate the PRC V
in (2.4) one calculates the PRC numerically as in figure 2.
The line φn+1 = φn is also shown in black. The intersection
of the blue curve with this gives the set of fixed points and
one of these fixed points φ∗ is stable. This has the property
that if the initial phase is not a fixed point then the phase
φn on day n converges to φ∗ as n increases. The embedded
graph in green shows the phase of entrainment as a function
of the period p of the unforced system (i.e. the free-running
system in darkness) calculated using the IRCs as above (full
line) and numerically as above (dots). The period p was
changed using a software tool that we have developed that
allows one to move parameters so as to change a particular
output (here p) without changing the other key outputs.
This tool is available on our website.

2.4. Temperature compensation

Circadian clocks maintain period under a wide range of
environmental conditions. In the case of temperature,
this property is referred to as temperature compensation
(Rensing & Ruoff 2002). Temperature T will presum-
ably affect a number of parameters ki that are functions
of T : ki = ki(T ). When temperature changes from T to
T + δT , then the change in the parameter ki will be
approximated by k′

i(T )δT where k′
i(T ) is the derivative

of ki(T ). Thus, by the linearity of equation (2.1) we can
define the IRC for temperature (at T ) acting on the out-
put variable Qj by fT,Qj (φ) =

∑
i k′

i(T )fki,Qj (φ). Then
temperature compensation (for period) holds around
T provided that the integral over a complete cycle of
fT,Qj (σ) is close to zero when Qj is period (Ruoff et al.
2000), i.e. ∫ p

0

fT,period(φ) dφ ≈ 0. (2.5)

The chief advantages of IRCs in this context are (a) that
the effects of multiple parameter changes are easy to
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Figure 4. Period (in hours) as a function of temperature (in
K) for the Neurospora model of Leloup et al. (1999) when
the dependence of parameters is given by the Arrhenius
relation. A commonly considered functional relationship is
given by the Arrhenius relation ki = Ai exp(−Ei/RT ) where
T is temperature, Ai is the so-called pre-exponential factor,
Ei is the activation energy of the appropriate reaction and R
is the gas constant. We have chosen the activation energies
Ei so that the model for Neurospora of Leloup et al. (1999)
is temperature compensated at T = 283. We see that near
to T = 283 the period changes slowly with T , but further
away it changes more rapidly. Biological oscillators have a
more global temperature compensation where the period is
roughly constant over a more substantial temperature range.
Thus we refer to this as global and the sort of temperature
compensation seen in the figure as local. We will discuss how
to achieve global compensation in a future paper.

compute and (b) that we can use fT,Qj (s) (in a similar
fashion to fki,period in §2.3) to also study the entrain-
ment properties of temperature. To study entrainment
by temperature one can, for example, use a map F as in
(2.3), but where fki,period is replaced by fT,period in the
definition of V . Then we see that for robust entrain-
ment by temperature we require that fT,period has a
large enough amplitude, and that to have temperature
compensation as well, fT,period must be balanced in the
sense that it must satisfy (2.5). In figure 4 we show
an example of a temperature compensated system that
satisfies (2.5) and discuss the difference between local
and global temperature compensation.

The preservation of the unforced D-D period p under
temperature changes is only a secondary phenomenon
for evolution in that the exact value of the period
in D-D does not appear to have a direct selective
value. One may ask why temperature compensation
has occurred. A possible reason is suggested by our
discussion of robust entrainment which presumably
does have selective advantage. We showed above that
the condition for preservation of robust entrainment
involves changes in both the function V defined there
and the circadian correction ∆L = L − p. Therefore,
under temperature changes, if the changes caused in
V are small, we get persistent robust entrainment
(with a robust phase) provided that p is stable under
temperature changes.

2.5. Parameter stability

If we require that the period or other output variable Qj

is relatively stable to (sustained) perturbations of the

J. R. Soc. Interface (2004)
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parameter ki, then by equation (2.1) we require that
the integral over a complete cycle in equation (2.1) of
the IRC fki,Qj is close to zero:

∫ p

0

fki,Qj (φ) dφ ≈ 0. (2.6)

By the linearity of equation (2.1) we can apply this
to study mixed simultaneous perturbations of many
parameters. Robustness to sustained parameter pertur-
bations requires that all IRCs must satisfy (2.6). We can
ignore those IRCs that have small amplitude because
they will therefore have small integral. However, by the
above discussion, some IRCs must have large amplitude
for robust entrainment to be possible. Additionally, for
some other parameters ki and output quantities Qj, the
IRCs will have large amplitude because of the nature of
the ki, which impact directly upon the output Qj under
consideration (e.g. for the effect of phosphorylation and
degradation rates on period). It is widely thought that
there is a strong evolutionary advantage to robustness,
so selection may be expected to change the system so
as to balance the large amplitude IRCs so that their
integral is small. This provides a significant number of
evolutionary goals.

2.6. Robustly tuned output pathways

Let us suppose that a particular output pathway is
driven by the molecular species whose level is given by
xi(t). Presumably there will be strong selective pressure
on the output pathway to ensure the appropriate phase
and amplitude relationships. The change in the level
of xi(t) at t = t0 produced by a small change in the
parameters can be calculated directly from the IRCs
fki,Qj (φ) where Qj = xi(t0) via equation (2.1). More-
over, we can also use these same IRCs to calculate
the corresponding change in phase as explained in the
Electronic Appendix.

3. TRACKING MULTIPLE PHASES

There is a clear advantage if the clock is able to
control genes using independent phases (Daan et al.
2001; Pittendrigh & Daan 1976). For example, for many
organisms there will be a need to trigger behaviours or
to express genes at times that are determined by either
dawn or dusk. This regulation has been demonstrated
in some cases (Pittendrigh & Daan 1976). Since day
length varies during the year this cannot be handled by
a pathway that introduces a fixed time delay starting
from just one phase such as dawn. The obvious way
to deal with this is to use either two oscillators or,
as we consider here, a single oscillator that has two
or more loops, one of which is locked to dawn and
while the other is locked to dusk (Daan et al. 2001;
Pittendrigh & Daan 1976). When we say a loop is
locked to dawn we mean that if the timing of dawn is
changed by a small amount δdawn and dusk is kept fixed
then the dominant change in all the time-series of the
products in the given loop is a simple phase change by
approximately δdawn (and similarly for dusk). Recent
evidence suggests that the pairs of mammalian clock
genes (Per1 and Per2, Cry1 and Cry2 ) exhibit some
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Figure 5. The two Per loops of the model detailed in the
Electronic Appendix separately track dawn and dusk. The
figure shows the phase relative to dawn of the minimum of
Per1 and the phosphorylated Per2 levels as a function of the
change in daylength from 12 h. We obtain the same plot if
we replace Per1 or phosphorylated Per2 by another product
in the same loop. We see that Per1 tracks dusk and Per2
tracks dawn. Note that because the model is entrained, if
we measure phase relative to dawn (respectively dusk) then
the change in phase is just a function of the length of the
period between dawn and dusk. Thus, the extent to which
a variable tracks dawn is completely determined by how it
tracks dusk and vice versa.

of the properties expected in such systems (Albrecht
et al. 2001; Oster et al. 2002; Reddy et al. 2002; Zheng
et al. 2001). However, to date there are no models of
molecular systems that have been shown to have the
required properties. Indeed, although they almost all
have multiple loops, the published oscillators in table 1
only track a single phase for the parameter values used.

In general a single loop can only track a single
phase. A change of dawn or dusk causes the same phase
change to all products in the loop. This is because a
small change in either dawn or dusk causes a small
perturbation that is localized around the single phase
where a change has been made, say for phases in
[φ, φ + δφ]. As argued below, the dominant change to
the limit cycle x = g(φ) at these phases is a simple phase
change involving all products. Since for phases outside
of the interval [φ, φ + δφ] the system has the same
light conditions as before, it follows that the change
to the limit cycle as a whole is a simple phase change
x = g(φ + α) and the phase relation of all products to
one another is unchanged.

However, the theory of dynamical systems tells us
that oscillators that can track independent phases can
certainly be constructed. This follows from the theory
of normal hyperbolicity (Guckenheimer & Holmes 1983)
that allows us to couple systems together while pre-
serving such key flexibilities. We have used this theory
to construct such a system. It can be shown that the
mammalian clock model of Leloup & Goldbeter (2003)
tracks dusk. It contains a single Per gene and we have
added a second Per gene loop to this model in such a
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way that (a) without light the system stably oscillates
in a periodic fashion and (b) with light the new loop
tracks dawn while the old loops tracks dusk. This model
is included in table 1 and the details are given in the
Electronic Appendix. Figure 5 shows how it tracks dawn
and dusk.

The theory of dynamical systems and our arguments
about flexibility and phase changes imply that there are
the following restrictions on such systems:

• a single loop can only track one phase even if it has
multiple input pathways for light; and

• to track m independent phases one needs at least
m loops with at least one input pathway for light
into each loop; although loops can share an input
pathway this pathway must modulate a different
parameter in each loop.

Note that the discussion here suggests an interesting
prediction: in many cases (and all where both dawn
and dusk are tracked) one should find multiple input
pathways for light. It has been pointed out to us by an
anonymous referee that evidence for this already exists
(Gau et al. 2002; Oster et al. 2003).

4. FLEXIBILITY AND EVOLUTIONARY
ACCESSIBILITY

We now address part (b) of the fundamental problem
discussed in §1, namely, how easy it is to simultaneously
tune for multiple evolutionary goals.

Each variation δk = (δk1, . . . , δks) of the parameters
will cause the limit cycle to vary and this in turn
changes the vector of output characteristics Q = (Qj)
by an amount δQ = (δQj). In principle, since there are
s independent parameters it is reasonable to assume
that if these are freely varied, then the resulting changes
δQ in the output will fill out a s-dimensional set. How-
ever, even when the parameter variations δk can freely
explore all the parameter combinations, the direction of
the resultant vector δQ of outputs may be highly non-
uniform with the result that while some specific small
output changes δQ can be achieved by small parameter
changes (the accessible directions), many others can
only be reached by excessively large parameter changes.
Significant movement in the latter inaccessible direc-
tions is also extremely rare if the parameter changes
are random with most movement being in the accessible
directions: the outputs δQ resulting from these random
variations may be dominated by just a few directions
with the result that the outputs only explore a small
fraction of the available δQ-space.

Since evolutionary adaption will find it very difficult
to move the system in the inaccessible directions it is
important to understand them and, in particular, the
dimension of the set of the accessible directions. This
dimension (which we call the flexibility dimension) is
an important quantity because it tells us how many of
the key output variables evolution is able to tune at any
time and in how many dimensions evolution can move
the system. It turns out that the definition and calcula-
tion of this is a little sophisticated mathematically but,
nevertheless, very natural. We now turn to this.

4.1. Definition of accessibility and flexibility

It is possible to understand and measure flexibility using
mathematical analysis and thus to obtain universally
applicable principles. If the variations δk are small,
the relationship between δk and δQ is approximately
linear and given by a matrix M = (Mij) where δQj =∑

i Mijδki is the change to Qj caused by a change in ki

of δki for i = 1, . . . , s. To characterize accessibility we
define what we mean for a output vector to be accessible
and calculate the dimensionality d of the set of acces-
sible vectors. The accessible vectors can be described
either as those directions in δQ-space that are easier to
move in using parameter variations or those directions
that account for most of the variance of the outputs
produced by random variation of the parameters.

In the first approach, for a desired change δQ = (δQj)
that can be achieved by a parameter variation δk =
(δk1, . . . , δks), we consider the ratio RδQ of the length
of the vector of changes (δQj) to that of the vector
(δki/ki). (If there are multiple δk achieving δQ we take
the smallest by length.) Because δQ and δk are linearly
related, this ratio does not depend upon the size of δQ,
but only on its direction.

The reason we take (δki/ki) instead of δki in the
definition of RδQ is that the values of the parameters
ki can vary over more than one order of magnitude and
it is therefore usually more appropriate to consider the
proportional variation, which has the added advantage
of being dimensionless. We do not do this scaling for
δQj because (a) we assume that they have been chosen
so that they are dimensionless and so that their sizes
are all of the same order of magnitude and (b) later we
will consider the case where δQ is the actual variation
in the limit cycle, in which case the scaling makes no
sense.

To define accessibility we fix a small number ε and
say that the direction δQ is accessible if RδQ is greater
than εR∗ where R∗ = supδQ RδQ, i.e. RδQ is not too
small compared with the maximum possible value it
can take. For example, if we choose ε = 0.01, a variation
δQ is inaccessible if it requires a percentage parameter
change that is more than 100 times the percentage
change of δQ.

A simple example may help the reader here. Suppose
that the components δQj of δQ represent changes in
normalized (dimensionless) period (= period/daylength
= p/L) and the (suitably normalized) phases and ampli-
tudes mentioned at the end of §1. We can ask whether
the vector δQ = (0.1, 0, . . . , 0), representing a change
in period of 0.1L and no change in any of the phases
or amplitudes, is accessible or not. If we choose ε = 0.01
then it is inaccessible if the change it represents requires
a tenfold change in parameters or more.

In the second approach using random variations,
a direction δQ is regarded as being accessible if the
variance of the size of the projection of the output
variations onto the given direction δQ as a proportion
of the total variance of the output variations is greater
than ε2. This is elaborated in Appendix A.

Both approaches lead to essentially the same thing.
For both of them the set of accessible vectors forms
a cone C that is d-dimensional in the sense that it
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contains a d-dimensional vector space and no vector
space of higher dimension. If W is such a vector space
then all the vectors in this cone (i.e. all accessible
vectors) are of the form w + v where w is in W and
where, compared with w, v is extremely small (of order
ε). Thus, neglecting these very small adjustments v,
the set of accessible vectors is d-dimensional. We call
the number d the flexibility dimension of the vector of
outputs Qj under consideration.

The reader should note that these notions of acces-
sibility are applied in the linear regime. The changes
δQ and the parameter δk needed to achieve them are
small even though in the inaccessible case the size of
δk may be much greater than δQ. (Recall that RδQ

does not depend on the size of δQ, but only on its
direction.) We are not considering the case where δQ
is so large (and inaccessible) that δk must be so large
that the perturbation is outside the region where the
linear approximation is accurate.

As defined above, the flexibility dimension for a given
vector δQ of outputs depended on the set of output
characteristics we have chosen to focus on. However,
there is a natural way to define a flexibility dimension
of the full system, which accounts for the complete
set of possible outputs in one go. This is because all
changes in the output characteristics of importance are
determined by the change in the limit cycle γ and its
period p. A small change δk in the parameters will cause
a change (δγ, δp) to the limit cycle γ and its period p,
and the changes in all output variables can be calculated
from this. Since, the period p = p(k) can vary with
the parameters it is necessary to normalize the time-
parametrization of γ and replace it by γ̄(t) = γ(p(k)t).
Then, as k varies, γ̄ remains periodic of period 1 and
therefore variations δγ̄ in γ̄ are always of period 1 and
can be compared with each other. Moreover, γ and p
are determined by γ̄ and p and vice versa. Thus we
consider δk → (δγ̄, δp) rather than the correspondence
δk → (δγ, δp).

We therefore define the flexibility dimension d to
be the flexibility dimension of the output vector δQ =
(δγ̄, δp). Note that if we are dealing with an entrained
system, the period p does not change when the param-
eters are varied by a small amount. Therefore, in this
case we can ignore the variations δp.

The linearized relationship δk → (δγ̄, δp) is described
by a linear operator that can easily be well approxi-
mated by a matrix M∗ and d can be calculated from this
matrix as explained in Appendix A and the Electronic
Appendix.

4.2. Inflexibility of circadian clock models

In Appendix A we explain how one can estimate
the flexibility dimension d. This uses singular value
decomposition (Press et al. 1988). We have estimated
d directly for a range of systems and the results are
given in table 1. We find that all of these systems are
relatively inflexible in the sense that for small values of
ε2 of the order 10−3–10−2 the flexibility dimension d is
smaller than the number s of parameters by an order of
magnitude. On the other hand, we see that increasing
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Figure 6. (a) The derivative with respect to time of the
limit cycle for the Drosophila model of Leloup et al. (1999).
(b)–(f ) The principal components with largest singular
values for the matrix M∗ for the same model. The units of
the ordinate are hours and those of the abscissa are largely
irrelevant in that it is the shape of the curves that matter
and not their scale. Only the Per mRNA, phosphorylated
TIM and nuclear Per :TIM complex levels are shown. The
corresponding singular values are: (b) 1561.7; (c) 318.1;
(d) 178.7; (e) 32.6; (f ) 17.2. Note that the similarity of the
curves in (a) and (b) shows that the dominant principal
component is an infinitesimal phase change.

the loop complexity generally causes d to increase in
proportion to the loop complexity.

4.3. For entrained systems the dominant
principal component is a phase change

If we apply a number of random parameter changes
δk(�) as described in Appendix A we obtain the set
of corresponding output change vectors δQ(�). We can
perform a principal component analysis of the set of
output vectors {δQ(�)}. These principal components can
be calculated from the matrix M∗ described above in
§4.1 (also see the Electronic Appendix).

In each of the entrained systems we find that the
dominant principal component is almost exactly given
by the derivative g′(t) of the limit cycle x = g(t) (see
figures 6a and 6b). Such a principal component e(t) is
an infinitesimal phase change, i.e. it is the derivation
at α = 0 of the change in g(t) produced by a change of
phase α, i.e. e(t) = d/dt|α=0g(t + α) = g′(t).

This can be understood as follows. A general insight
from the theory of dynamical systems is that those
directions that a limit cycle moves most in when param-
eters are varied are correlated with the directions that
are softest with respect to perturbations of the initial
conditions, i.e. those directions with the property that a
perturbation of the dynamical variables away from the
limit cycle is least rapidly damped. These correspond
to the direction associated with the Floquet multi-
pliers (Guckenheimer & Holmes 1983) of maximum
modulus. For the systems in table 1, a perturbation of
the dynamical variables causes a deviation away from
the limit cycle, which is then corrected back to zero.
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The correction has a rapid phase in which the shape
of the limit cycle is recovered (so that x = g(φ + α))
and a slow phase where the phase shift α is corrected.
The way that this latter relaxation takes place will
typically be described by one or two multipliers: one
when the coupling to light is relatively weak and the
phase adjusts monotonely and two (as in model 1) when
the phase correction overshoots and the multipliers are
complex conjugates. Thus, parameter changes easily
result in a change of phase while other characteristics
(such as phase relationships) are harder to change with
the difficulty being greatest in systems with lower loop
complexity.

The local structure of the dynamics near to the limit
cycle are largely determined by the Floquet multipliers.
These are associated with the different rates of con-
traction onto the limit cycle (Guckenheimer & Holmes
1983). For the clock systems considered here: (i) one
multiplier is 1; (ii) all others have modulus less than
1 (i.e. the limit cycle is attracting); and (iii) almost
all of them have a very small modulus (corresponding
to directions with very fast contraction onto the limit
cycle). The inflexibility is due to (iii) because the
flexibility dimension d is related to the number of
Floquet multipliers λ for which 1/|log λ| is small (of
order ε).

The fact (iii) is due to the loop structure of the clocks
and the nature of protein degradation and modification
because these determine the Floquet multipliers. It is
therefore expected to be a general feature of regulatory
networks. Although it is difficult to prove general results
about how rapidly the multipliers decrease, it is clear
that a large class of regulatory systems will have this
property. What is important for this are the following
characteristics: (i) one of more of the protein products
in each loop has a degradation rate whose time average
is not too small and (ii) the forward and backward
rates k+

i , k−
i−1 : Pi ↔ Pi+1 (typically corresponding to

(de)phosphorylation) also have a time average that is
O(1) on a time scale of hours. This fact ensures that
the product of all the multipliers is of the order Π =
exp(−rL), where L is the period of the oscillator and r
is the number of products in the loop. This product Π is
therefore extremely small. A more detailed calculation
is needed to show that only very few of the multipliers
are larger than O(ε).

4.4. Sources of flexibility

The relevant Floquet multipliers with larger modulus
(i.e. those giving flexibility) are often associated with
specific structural or dynamical aspects. For example,
as discussed above, the largest multipliers of the mod-
els considered here are usually associated with phase.
It appears that a system consisting of a single loop
can only possess other relevant multipliers if it has a
topology and rate constants that ensure that under
reasonable starting conditions the mean time before a
protein is degraded is large (for example, because it
typically has to go through a series of modifications
(and their reverses) before it is in a state where it is
targeted for degradation). Otherwise, all but one of the
Floquet multipliers have very small modulus.

An interesting consequence of this observation is
that the need for flexibility constrains the molecular
structure. For example, it seems to imply a selective
advantage for selective degradation. The more products
in a loop that are degraded, the smaller the modulus
of the Floquet multipliers and hence the less flexible
the system. Since some degradation has to occur, this
suggests that as few as possible of the protein products
in a loop should be degraded at as low a rate as possible.

The number of these relevant multipliers is multi-
plied when loops are coupled and, in addition, new ones
result from the coupling. To see this consider the case
when the coupling is weak. There will typically be a
multiplier associated with the way in which perturba-
tions of the relative phase of the two loops die away.
As the coupling is increased this multiplier may become
smaller or complex, but for some range of coupling
strength it will remain relevant. This suggests that
the flexibility dimension is much less than and roughly
proportional to the loop complexity.

4.5. Robustness to stochastic perturbations

It is worthwhile considering the relationship between
flexibility and robustness to stochastic perturbations in
the context of the large Ω limit, where Ω is the number
of molecules involved in the clock (Gonze et al. 2002).
In this limit the fluctuations about the limit cycle are
normally distributed with zero mean. The projections
of these fluctuations onto the direction of the limit
cycle after a time period of Np (p is the period) have
a variance that is σ2 = N/αΩ, where α is calculated
according to the prescription in Gonze et al. (2002). The
projections onto the eigendirections that are transverse
to the limit cycle have a variance that is O(|λ2

j |), where
λj is the corresponding Floquet multiplier. It follows
from this that one can often reduce the effect of stochas-
tic perturbations by reducing the multipliers. However,
this also reduces the flexibility of the system. Therefore,
evolution must trade off these two effects or come up
with different ways of counteracting this stochasticity.

5. DISCUSSION: THE NEED FOR
FLEXIBILITY IN THE EVOLUTIONARY
TUNING OF MULTIPLE TARGETS

We have presented an analysis of key evolutionary aims
of circadian clocks such as robustness to perturba-
tions, temperature and pH compensation, appropriate
period, robust entrainment by environmental signals,
and correct phase relationships for output pathways.
It is widely believed that there is selective pressure
for each of these targets. We have discussed the char-
acterization of each of these in terms of IRCs (see
table 2). These IRCs are relatively easy to calculate
and we have provided software to do this on our website
(http://www.maths.warwick.ac.uk/ipcr/).

The IRCs for period give accurate approximations
of type 1 PRCs for environmental pulses with a broad
range of durations and intensities via equation (2.2).
This can be used to study entrainment by environ-
mental signals such as light or temperature. We find
that robust entrainment requires that the appropriate
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Table 2. Summary of how different properties are characterized by IRCs. Each evolutionary aim can be described as tuning
one or more particular system variables. Note that in the case of entrainment and PRCs the system variable is actually a
function rather than just a number.

Evolutionary aim Mathematical characterization in terms of IRCs

setting period change in period due to change δki is ≈δki

∫ p

0

fki,period(φ) dφ

robust entrainment stability and phase determined by V (φ) = −δki(I)

∫ φ+dusk–dawn

φ

fki,period(ψ) dψ

when input pathway modulates ki by δki(I)

PRCs for short disturbances PRC approximated by −δkifki,period(φ) dφ when input pathway
of duration dφ modulates ki by δki

PRCS for disturbances PRC approximated by f(φ) = −δki

∫ φ+φ2−φ1

s

fki,period(ψ) dψ
lasting from φ1 to φ2

temperature compensation

∫ p

0

fT,period(φ) dφ≈ 0

pH compensation

∫ p

0

fpH,period(φ) dφ≈ 0

rough parameter stability for ki

∫ p

0

fki,Qj (φ) dφ≈ 0

robust phases for output pathways uses linear combination of fki,x�(t0)(φ)

combination of IRCs for the pathways involved in the
environmental input has large amplitude and that the
circadian correction ∆L = L − p (§2.3) is appropriate
to ensure a robust stable fixed point of the mapping
F given by (2.3). On the other hand, properties such
as temperature compensation require that the IRC for
temperature, which is a linear combination of basic
IRCs fki,Qj (φ), is balanced in the sense of equation
(2.5). A similar argument applies to compensation for
sustained variations of other environmental components
such as pH. Thus we see that the conditions for
robust entrainment by an environmental variable such
as temperature and compensation for that variable are
independent and perfectly compatible. Stability of key
output variables with respect to parameter changes is
also characterized by equation (2.6). This suggests that
for key outputs Qj it will be necessary for evolution
to roughly balance (in the sense of equation (2.6))
those IRCs fki,Qj (φ) that have large amplitude because
otherwise these outputs will be unstable to variations
in the parameters. For example, if Qj is period and
fki,Qj (φ) has large amplitude and is far from balanced,
then sustained variations in ki are likely to change the
circadian correction sufficiently to destroy entrainment
(see figure 3 and equation (2.3)). The conditions for
correctly tuned output pathways and the robustness
of this correct tuning also involve combinations of the
IRCs.

Since we can express the various evolutionary aims
in terms of IRCs, we can determine to what extent
they are independent of each other. This requires an
analysis of which IRCs are involved, the nature of the
condition on the IRC and the extent to which the IRCs
are linearly independent of each other. However, it is not
difficult to see that, in general, a large number of the

most important evolutionary goals discussed here are
independent. It therefore emerges that there are mul-
tiple independent characteristics that we can expect to
confer a selective advantage and that moreover should
be accessible to a process of small random perturbations
and selection provided the flexibility of the clock is large
enough. It seems reasonable that, there will be more
than five or six such characteristics that are of key
importance and, therefore, that the required flexibility
will at least require a loop complexity equivalent to the
most loop complex models in table 1.

In order to simultaneously tune q of the charac-
teristics that are of key importance it is necessary
to be able to move the appropriate output vector Q
independently in q dimensions by using small changes
in the parameters. However, even if one can freely move
lots of parameters it does not follow that by doing
this one can freely move the output Q with the same
dimensionality. Movement of Q in certain directions
is highly resistant for the clock systems studied. Seen
another way: if the parameter changes are random and
uncorrelated, then the movement produced in Q will
tend to be highly correlated with the changes strongly
concentrated in just a few dimensions. The number d
of these dimensions is given by the flexibility dimension
that we have introduced and we have provided strong
evidence that it is smaller than the number of parame-
ters by an order of magnitude and roughly proportional
to the loop complexity of the system.

Thus, evolution will only be effective in reaching mul-
tiple independent targets if the flexibility dimension d
of the system is as large as the number of targets. If the
system is constrained so that it can only reasonably
move in a small number of dimensions then it will only
be able to tune a small number of targets.
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It follows that there is likely to be a strong selective
advantage in increasing loop complexity and strong
selection for mechanisms that enable this such as gene
duplication and protein variation. Mechanisms and
divergence that may increase complexity are found
in the circadian clocks of Neurospora (Garceau et al.
1997), Drosophila, Arabidopsis (Eriksson et al. 2003)
and the mouse (Daan et al. 2001; Oster et al. 2002;
Zheng et al. 2001). In addition, we have argued that
the selective degradation of protein products also aids
flexibility and therefore that we would expect to find
that not all protein products are degraded at the same
rate but that degradation is concentrated on selected
products in certain modified states. Finally, we have
shown that increased loop complexity is implied by the
need to track both dawn and dusk (and perhaps other
phases). A single loop can only track one phase even if it
has multiple input pathways for light; to track multiple
independent phases one needs at least the same number
of loops with at least one input pathway for light into
each loop.

Since one can understand the lack of flexibility in
terms of properties of dynamical systems one can make
some estimate of the range of applicability of these
ideas. It therefore seems rather clear that the ideas
discussed will apply to a broad range of dynamical
processes of such regulatory networks and not just to
oscillating systems. For example, similar ideas should
apply to the propagation of perturbations along path-
ways, multistable networks that act, for example, as
switches and networks of transcription factors that
determine spatial patterning.

We are grateful to Sanyi Tang and Isabelle Carré for useful
discussions on these topics and the BBSRC for funding.
We thank Hugo van den Berg for a very helpful critical
reading of the manuscript.

APPENDIX A

The mathematical aspects of this paper depend on the
theory concerned with the linearization of a dynamical
system around a limit cycle (Guckenheimer & Holmes
1983). We have developed a software tool that will
calculate most of the concepts that are introduced in
this paper. In particular, it will calculate all IRCs
and the flexibility dimension. It can also be used to
help steer in parameter space so as to achieve a par-
ticular goal. This tool is available from our website
(http://www.maths.warwick.ac.uk/ipcr/).

A.1. Flexibility, accessibility and random
variations

We can also define the accessible cone by considering
random variations such as when the outputs δQ(�) arise
from variations δk

(�)
j = η

(�)
j kj , where the proportions

η
(�)
j are identically distributed independent random

variables. This is a natural approach as it can be
thought of as modeling the process of evolutionary
mutation. We compare the variance of the size of the
projection of the δQ(�) onto a given direction δQ in the

output space with the variance of the sizes ||δQ(�)||:

(R′
δQ)2 =

∑
� δQ(�)δQ

‖δQ‖2
∑

� ‖δQ(�)‖2
.

Thus if random perturbations of the parameters pro-
duce output changes that tend to have a significant
component in a particular direction δQ the R′

δQ will
be significant. On the other hand, if they tend to have
little or no projection onto this direction then R′

δQ will
be small.

We define the accessible vectors δQ to be those for
which R′

δQ > ε. If we choose ε so that ε2 = 0.001, then
we can capture 99.9% of the variance by projecting the
output changes δQ(�) onto a subspace within the set
of accessible vectors. Randomly chosen perturbations
are extremely unlikely to result in Q being changed in
directions outside the accessible cone.

A.2. Measurement of flexibility

If the relationship between small parameter changes δk
and the changes (δγ̄, δp) caused to the reparametrized
limit cycle γ̄ and its period p is given (or approximated)
by the matrix M∗ (i.e. (δγ̄, δp) = M∗δk), then the
relationship between the scaled parameters η = (ηi =
δki/ki) and δγ̄ is given by (δγ̄, δp) = M∗∆η, where
∆ = diag(k1, . . . , ks).

The estimation of the flexibility dimension d uses
the singular value decomposition (Press et al. 1988)
of M∗∆. It can be shown (see Electronic Appendix)
that for a given choice of ε the flexibility dimension d is
given by the number of singular values σj of M∗∆ with
σj/σ1 larger than ε (σ1 is the largest singular value).
Moreover, it is relatively easy to numerically estimate
M∗ and its singular values (see Electronic Appendix).
This is how we estimate d.

Associated with each singular value σj is a direction
ej in the output space (see §4.3). These directions are
called the principal components. For random perturba-
tions δk(�) of the form considered above (with outputs
δQ(�)), the variance of the projection of the δQ(�) onto
the ej with σj > ε is proportional to ε2. Thus, we
choose ε ≈ 0.001 and we capture approximately 99.9%
of the variance if we approximate the outputs by their
projection onto the first d principal components ej . It is
through the characterization of accessibility by singular
values that the equivalence of the two approaches to
flexibility can be established.

The fact that d is so small compared with s follows
from the rapid decrease in the singular values σ1 �
σ2 � · · · � σs (at most s are non-zero). The way in
which they fall off can be determined from the so-called
characteristic (Floquet) exponents (Guckenheimer &
Holmes 1983) of the limit cycle. Roughly speaking, a
perturbation of the parameters induces a change whose
magnitude in the direction of the eigenspace of an
exponent χj is of order 1/|log λj |. This allows one to
relate the singular values to dynamical properties of the
network.
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